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Abstract
The spectrum and eigenfunctions in the momentum representation for a 1D
Coulomb-like potential with deformed Heisenberg algebra leading to minimal
length are found exactly. It is shown that the correction due to the deformation
is proportional to the square root of the deformation parameter. We obtain the
same spectrum using the Bohr–Sommerfeld quantization condition.

PACS numbers: 03.65.Ge, 02.40.Gh

1. Introduction

Quantum mechanics with modification of the usual canonical commutation relations has
attracted a lot of attention recently. Such works are motivated by several independent lines
of investigation in string theory and quantum gravity, which suggest the existence of a finite
lower bound to the possible resolution of length �X [1–3].

In this paper we consider 1D quantum mechanics with the following deformation [4–6]:

[X,P ] = ih̄(1 + βP 2). (1)

Here βP 2 is a small correction. If β = 0 we obtain the usual algebra. Such a deformation
implies that there exists a minimal resolution length �X � h̄

√
β [5], i.e., there is no possibility

of measuring coordinate X with accuracy more than �X. Note that the deformed commutation
relation (1) gives the same uncertainty relation as was suggested in string theory [1]. That is
why it was assumed that the physical position and momentum operators could be identified
with X and P operators satisfying the deformed commutation relation (1). Thus, we demand
that these operators as well the Hamiltonian H be Hermitian operators.

The use of the deformed commutation relation (1) brings new difficulties in solving the
quantum problems. As far as we know there are only a few problems for which spectra have
been found exactly. They are the one-dimensional oscillator [5], D-dimensional isotropic
harmonic oscillator [7] and three-dimensional relativistic Dirac oscillator [8]. Note that in
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the one-dimensional case the harmonic oscillator problem has been solved exactly [9, 10]
for more general deformation leading to nonzero uncertainties in both position and
momentum.

In this paper, we solve the following eigenvalue problem:

P 2ψ − α

X
ψ = Eψ. (2)

Here we put h̄ = 1 and 2m = 1, 1/X means inverse operator of operator X. Recently, in the
undeformed case this problem was considered in [11, 12]. There exists a similar singular
potential −α/|X| which had been considered in detail. Since these potentials are singular
there exist a variety of approaches to the quantization conditions (paper [13] can be considered
as a mini review on this topic) and due to different symmetric extensions of operator −α/|X|
different spectra are obtained [14].

Although the potential −α/X has not been studied so intensively as −1/|X|, it has some
interesting application in theoretical physics. In [15], it is shown that this potential appears
in the investigation of mass spectra of mesons (quark–antiquark systems) in the framework of
Dirac oscillators. The problem, in the centre-of-mass frame, was reduced to a familiar radial
equation but with the singular potential V = −b2/(r2 − a2) ∼ −b2/2ax where x = r − a.
The important part of this potential is just one-dimensional Coulomb-like problem which
was studied in [15]. At the scale of energies and lengths of this system one can expect the
appearance of measurable influence of the minimal length on the energy spectrum. This is
one of the main physical motivations of our studies of the potential −α/X in deformed space
with minimal length.

Also, the potential −α/X may have application in the physics of semiconductors and
insulators [11]. The possibility of using deformed commutation relation (1) in condensed
matter physics for the description of nonpointlike quasi-particles was pointed out by Kempf
[16]. In this case, the minimal length is interpreted as a free parameter linked with the structure
of nonpointlike particles and their finite size; and no attempt is made to give an explicit link
with some fundamental properties of the particles [17]. We also would like to present a
toy model which is described by this potential. In this model, a point dipole with constant
orientation (constant orientation of the dipole can be provided by a strong uniform electric
field) is moving along a line in the field of a uniformly charged wire which is perpendicular to
the motion line.

In the deformed case, the spectrum of the three-dimensional hydrogen atom was
approximately found by Brau with the help of perturbation theory [18], numerically by Benczik
and colleagues [19]. A comparison between the ‘space curvature’ effects and minimal length
effects was made in [20]. The authors of [21] claimed that they found the spectrum, but it
seems that there exists some incorrectness in their paper, which we discuss below.

The consideration of simple quantum systems in the deformed space gives the possibility
of studying the influence of deformation on energy spectra and finding the correction caused by
deformation. Comparing this correction with the experimental data it is possible to estimate the
value of deformation parameter (see, for instance, [18]). Thus, the investigation of quantum-
mechanical problems in the deformed space is interesting from the mathematical as well as
from the physical points of view.

This paper is organized as follows. In section 2, we define X and P operators and find
solutions of the eigenvalue equation (2). In section 3, we define action of 1/X operator
on eigenfunctions and discuss the quantization condition. In section 4, we obtain spectrum
from the Bohr–Sommerfeld quantization condition. And finally, in section 5, we discuss our
results.
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2. Momentum representation

There are different representations of algebra (1). One of them is the so-called quasi-coordinate
representation [5] X = x and P = 1√

β
tan

√
βp, where [x, p] = i. It is called quasi-coordinate

representation because X does not possess eigenfunctions for which the mean value of kinetic
energy is finite and therefore eigenstates of functions of operator X do not belong to the
physical states (for details see [5]).

Therefore, we prefer to use the momentum representation. In this representation the
momentum and coordinate operators read

P = p, X = i(1 + βp2)
d

dp
. (3)

Operator X defined in such a way is a Hermitian operator with the following definition of
scalar product [5]:

〈φ|ψ〉 =
∫ ∞

−∞

φ∗(p)ψ(p)

1 + βp2
dp. (4)

For the undeformed case, the action of inverse operator 1/X has been expressed in the
following way [22]:

1

X
ψ(p) = −i

∫ p

−∞
ψ(q) dq. (5)

In the deformed case we can express it in a similar way,

1

X
ψ(p) = −i

∫ p

−∞

ψ(q)

1 + βq2
dq. (6)

For such a definition 1
X

Xψ(p) = X 1
X

ψ(p) = ψ(p). But in the undeformed case the
application formula (5) leads to the existence of the only trivial solution ψ(p) = 0 [12].
Using the same procedure as in [12] for the deformed case we obtain the same trivial solution.

In order to obtain non-trivial solutions it is necessary to redefine 1/X operator slightly.
We rewrite formula (6) as

1

X
ψ(p) = −i

∫ p

−∞

ψ(q)

1 + βq2
dq + c, (7)

where c is a constant. For such a definition X 1
X

= 1, but 1
X

X �= 1. We shall find the value
of this constant below. Note that in the undeformed case existence of c in the momentum
representation corresponds to derivative discontinuity of eigenfunction at the origin in the
coordinate representation [12].

Multiplying the eigenvalue equation (2) by X we obtain a new equation which does not
depend on constant c:

XP 2ψ − αψ = EXψ. (8)

Its explicit form reads

i(1 + βp2) [p2ψ ′(p) + 2pψ(p) − Eψ ′(p)] − αψ(p) = 0, (9)

where ′ denotes the derivative with respect to p. The solution of the last equation is

ψε(p) = Cε

ε + p2
exp

[ −iα

1 − εβ

(
1√
ε

arctan
p√
ε

−
√

β arctan
√

βp

)]
, (10)

where ε = −E and a normalization constant Cε reads

Cε =
√

2

π
ε

3
4

1 +
√

εβ√
1 + 2

√
εβ

.
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If ε � 0, then normalization integral for eigenfunction (10) 〈ψε |ψε〉 diverges. So, we require
that ε > 0.

We can rewrite this eigenfunction in the following way:

ψε(p) = Cε

ε + p2

( √
ε + ip√
ε − ip

)− α

2
√

ε(1−εβ)
(

1 + i
√

βp

1 − i
√

βp

) α
√

β

2(1−εβ)

. (11)

In limit β → 0 this eigenfunction is equivalent to the corresponding eigenfunction for the
undeformed case from paper [22].

Function (10) satisfies equation (8) but it does not satisfy the initial equation (2) with
operator 1/X in the form defined by (6). If we define operator 1/X in form (7) we can find
such a constant c that eigenfunction (10) satisfies the eigenvalue equation (2).

The procedure presented in [21] leads to correct expressions of eigenfunctions in the one-
dimensional case and eigenfunctions expression from that paper and expression (11) coincide.
In [21], the quantization condition was chosen from the requirement of single-valuedness of
eigenfunction (11). It was stated that this condition is equivalent to α

2
√

ε(1−εβ)
= n, but the

influence of the term in the second parentheses on the single-valuedness was neglected. In the
next section, we discuss the correct quantization condition.

3. Spectrum

To find constant c let us make some manipulations with equation (9). After dividing it by
i(1 + βp2) and subsequent integration over p we obtain

p2ψ(p) + iα
∫ p

−∞

ψ(q) dq

1 + βq2
− αc[ψ] = Eψ(p), (12)

where c[ψ] is an integration constant (with respect to p) being, in general, a functional of ψ .
The last equation (12) has the form of the eigenvalue equation (2). So, we can express

the action of operator 1/X on an eigenfunction as follows:
1

X
ψ(p) = −i

∫ p

−∞

ψ(q) dq

1 + βq2
+ c[ψ]. (13)

Substituting the expression for eigenfunctions (10) into the eigenvalue equation (12) we obtain

c[ψε] = 1

α
lim

p→−∞(p2 + ε)ψε(p) = Cε

α
exp

(
iαπ

2(
√

ε +
√

βε)

)
. (14)

We require that the Hamiltonian corresponding to the eigenvalue equation (2) be a
Hermitian operator on its eigenfunction (10). It is obvious that operator p2 is an Hermitian
operator on these eigenfunctions. Thus, we require that operator 1/X be a Hermitian operator
on the set of eigenfunctions〈

1

X
ψεi

∣∣∣∣ψεj

〉
=

〈
ψεi

∣∣∣∣ 1

X
ψεj

〉
. (15)

Using expression (13) for operator 1/X we can rewrite this condition

i
∫ ∞

−∞

ψεj
(p)

1 + βp2
dp

∫ p

−∞

ψ∗
εi
(q)

1 + βq2
dq + c∗[ψεi

] ∫ ∞

−∞

ψεj
(p)

1 + βp2
dp

= −i
∫ ∞

−∞

ψ∗
εi
(p)

1 + βp2
dp

∫ p

−∞

ψεj
(q)

1 + βq2
dq + c

[
ψεj

] ∫ ∞

−∞

ψ∗
εi
(p)

1 + βp2
dp. (16)

According to the facts that∫ ∞

−∞
f (p) dp

∫ p

−∞
g(q) dq =

∫ ∞

−∞
g(p) dp

[∫ ∞

−∞
f (q) dq −

∫ p

−∞
f (q) dq

]
,
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and ∫ ∞

−∞

ψε(p) dp

1 + βp2
= 2Cε

α
sin g(ε), (17)

where

g(ε) = απ

2(
√

ε +
√

βε)
,

we simplify condition (16) to

sin[g(εi) − g(εj )] = 0.

As a result we have g(εi) − g(εj ) = πm, where m is an integer. So, by declaring that some
ε0 belongs to the spectrum we put the following condition on the remaining eigenvalues ε:

α

2(
√

ε +
√

βε)
= α

2(
√

ε0 +
√

βε0)
+ m (18)

or
α

2(
√

ε +
√

βε)
= δ + n, (19)

where n = m +
[

α

2(
√

ε0+
√

βε0)

]
is an integer (here [x] denotes the integer part of x), parameter δ

is a fractional part of α

2(
√

ε0+
√

βε0)
and is in the range 0 � δ < 1.

In fact, we obtain a family of spectra, each of them is characterized by a value of δ. The
value of parameter δ can be calculated from the results of an experiment.

For the undeformed case it is supposed in many papers that δ = 0; this corresponds to the
eigenfunction vanishing at the origin (ψ(x)

∣∣
x→0 = 0). Let us analyse the case of δ = 0 in the

deformed case more thoroughly. We have
α

2(
√

ε +
√

βε)
= n, (20)

where n is an integer. It has no finite solutions for n = 0 and it is a quadratic equation in
√

ε

if n �= 0. Its two real solutions read as

√
ε1,2 = −1

2
√

β
± 1

2
√

β

√
1 +

2α

n

√
β. (21)

According to the fact that
√

ε > 0 we have to keep only one solution with ‘+’ and, moreover,
we have to require that n and α have the same sign, for α > 0 we obtain that n is a positive
integer.

So, the spectrum of Hamiltonian (2) for δ = 0 is expressed as follows:

En = −ε = − 1

4β

(
1 −

√
1 +

2α

n

√
β

)2

, n = 1, 2, . . . . (22)

For small β energy spectrum can be approximated as

En = − α2

4n2
+

α3

4n3

√
β − 5α4

16n4
β + o(β3/2), n = 1, 2, . . . .

In the limit β → 0, the spectrum (22) coincides with the hydrogen atom spectrum with
α = e2,m = 1/2, h̄ = 1.

It is interesting to note that if δ = 0 then eigenfunction (10) is a single-valued function
of complex variable p except two finite cuts (the first cut goes from i

√
ε to i/

√
β, the second

one goes from −i
√

ε to −i/
√

β ). The condition of single-valuedness is widely used as a
quantization criterion [12, 21, 22], but in our opinion it is an unconvincing criterion.
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In general, δ �= 0 and the energy spectrum can be obtained in a similar way and it reads

En = − 1

4β

(
1 −

√
1 +

2α

n + δ

√
β

)2

, n = 0, 1, 2, . . . . (23)

Here, due to the fact that δ > 0 we obtain one additional level with quantum number n = 0.
If one tends δ to zero for n = 0 we obtain infinite negative energy and the corresponding
eigenfunction vanishes everywhere. Similar properties appear in the undeformed case [13].

4. Semiclassical approach

For the 1D undeformed case, [x, p] = i and the Bohr–Sommerfeld quantization condition
reads

2π(n + δ) =
∮

p dx, (24)

where n is an integer, and δ is a parameter which depends on the boundary conditions [23]
(0 � δ < 1). In this section, we construct the Bohr–Sommerfeld quantization condition for
the deformed case.

Operator X = i(1 + βp2) d
dp

we rewrite as

X = (1 + βp2)x, x = i
d

dp
. (25)

Here x, p are canonical variables which satisfy [x, p] = i.
Classical Hamiltonian corresponding to the system reads

H(x, p) = p2 − α

(1 + βp2)x
. (26)

From the energy conservation law H(x, p) = E we can express p as a function of x
but it is cumbersome to integrate the respective function. Instead, we use the identity∮

p dx = − ∮
x dp and express x as a function of p:

x = α

(1 + βp2)(p2 − E)
. (27)

When the particle moves from the origin to some turning point momentum p changes
from +∞ to 0, when the particle returns to the origin, p changes from 0 to −∞. Therefore,
− ∮

x dp = ∫ ∞
−∞ x dp and

2π(n + δ) =
∫ ∞

−∞

α

(1 + βp2)(p2 − E)
dp = πα√

ε + ε
√

β
. (28)

Here we take into account that for bound states energy E = −ε is negative.
Condition (28) coincides with condition (19) and we recover the same spectrum as in

formula (23).

5. Discussions

In this section, we discuss two interesting properties of the problem considered in this paper
and the Bohr–Sommerfeld quantization condition.

The existence of different spectral families means that there exist different extensions of
operator 1/X. We think that from the physical point of view it signifies that we can approximate
a singular potential with different regular ones and as a result we obtain different spectra
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(cf [13]). As one can see, the existence of minimal length does not remove the singularity of
potential 1/X.

Another interesting property is that the first correction to the energy spectrum is
proportional to

√
β. It brings an opportunity to reveal the existence of the deformed

commutation relation (1) for smaller β. For previously solved problems (harmonic oscillator
[16], hydrogen atom [18]) the correction is proportional to β. On the other hand, it is difficult
to say if it is possible, using the present experimental setup, to find corrections to energy
spectrum caused by deformation of space with minimal length in quantum systems described
by 1D potential 1/X.

We also derive the energy spectrum using the Bohr–Sommerfeld quantization condition.
It is interesting to note that semiclassical result coincides with the exact result obtained from
the Schrödinger equation.
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